RiverTrends Program
Field Data Sheet

Enter data online: https://cmc.vims.edu

Once datasheets have been entered, send original forms to:
Attn: RiverTrends Coordinator, Alliance for the Chesapeake Bay, 612 Hull St, Suite 101C, Richmond, VA 23224

Site Name and #: __________________
Monitor(s): ____________________

Monitoring date: ________________ (m/d/yyyy format)
Time: ____________________ (hh:mm format, military time)

OBSERVATIONS/WEATHER

Water surface:
- Calm
- Ripple
- Waves
- White Caps

Stream flow rate:
- High
- Normal
- Low
- Negligible

Weather Type:
- Sunny
- Drizzle
- Intermittent Rain
- Partly Cloudy
- Overcast
- Fog/Haze
- Rain
- Snow

Water Color:
- Normal
- Abnormal

Tidal Stage:
- High
- Outgoing (Ebb)
- Low
- Incoming (Flood)

Other Conditions:
- Sea Nettles
- Dead Fish
- Dead Crabs
- SAV
- Oil Slick
- Ice
- Debris
- Erosion
- Foam
- Bubbles
- Odor

Rainfall:
- __________ mm weekly accumulation (if greater than one week, don’t enter data results)
 - rainfall on day of testing: _____mm
 - rainfall 1 day before testing: _____mm
 - rainfall 2 days before testing: _____mm
 - rainfall 3 days before testing: _____mm
 - rainfall 4 days before testing: _____mm
 - rainfall 5 days before testing: _____mm
 - rainfall 6 days before testing: _____mm

Additional Comments (e.g. wind, recent events, anything unusual):
__
__
__
__
__

Total Time Spent Monitoring: __________ hours (Round to nearest 15 min.)
Includes travel to and from monitoring site; equipment preparation; sample collection; water’s edge time; and time spent filling out data sheets

Monitor Signature: ____________________ Date: ________________
Data

1. Temperature

Air temperature: _____._ _ °C (nearest tenth)
Water temperature: _____._ _ °C (nearest tenth)

Replicate (Mar/Oct): _____._ _ °C (nearest tenth)

2. Water Clarity and Depth

Depth of Water Column (total depth): ____._ _m (to nearest tenth of meter)
Secchi depth: _____._ _m (to nearest tenth of meter)
Turbidity tube: _____._ _cm (to nearest tenth of cm)

Replicate (Mar/Oct): _____._ _m (to nearest tenth of meter)

3. Salinity

☐ Refractometer
☐ Meter

Salinity: _____._ _ ppt
Salinity replicate (Mar/Oct): _____._ _ ppt

4. pH

☐ LaMotte Test Kit
☐ Meter

Meter Calibration:
Pre-sample calibration (7) _____._ _ (4.01) _____._ _ (10.01) _____._ _ Temperature _____._ _ °C
Post-sample check (7) _____._ _ (4.01) _____._ _ (10.01) _____._ _ Temperature _____._ _ °C

NOTE: If your calibration values differ by more than +/- 0.20 from the standard do not take pH sample

pH: _____._ _ SU (to nearest hundredth)
pH replicate (Mar/Oct): _____._ _ SU (to nearest hundredth)

5. Dissolved Oxygen

☐ LaMotte Test Kit
☐ Meter

Sodium Thiosulfate check (LaMotte Test Kit Only):
1st check: _____._ _ mg/L 2nd check: (only if results are < 9.4 or >10.0) _____._ _ mg/L 3rd check: _____._ _ mg/L

NOTE: Do not run DO test if results are not between 9.4 and 10, and 2 checks are not within 0.4 mg/L of each other

Test 1 _____._ _ mg/L (to nearest tenth)
Test 2 _____._ _ mg/L (to nearest tenth)

NOTE: Tests should be within 0.6 of each other- if not, perform 3rd test and report 2 closest results

6. E. coli Bacteria Measurement (using Coliscan Easygel™ plates)

Incubation time: _____._ _ hours (to nearest hour)
Incubation temp: _____._ _ °C (to nearest half degree)

Amount of water sample added to media bottle (max 5 ml per Rep):
Rep1: _____(A1) Rep2: _____(A2)

Total # of purple or dark blue colonies on plate:

NOTE: Disregard any pink/red, blue-green or white colonies- these are not E. coli bacteria

To calculate the Total Colonies of E. coli bacteria per 100 ml of water:
1. Divide 100 by the ml of water used. 2. Multiply this quotient by the number of purple colonies counted

Rep 1: ([100 ÷ A1] * B1) = _____CFU/100mL
Rep 2 (Mar/Oct): ([100 ÷ A2] * B2) = _____CFU/100mL

(Revised February 2019)